Sulfur Removal from Reformate

Theodore Krause, Romesh Kumar and Michael Krumpelt

Electrochemical Technology Program
Argonne National Laboratory

Annual National Laboratory R&D Meeting DOE Fuel Cells for Transportation Program June 7-8, 2000

Even with the Proposed FY2004 Limit for Sulfur in Gasoline, Sulfur will still be Problematic

- New regulations will lower sulfur content in gasoline to 30-80 ppm from the current national average of 350 ppm (maximum of 1000 ppm).
- Autothermal reformate produced from these low sulfur gasolines will still contain 3-8 ppm of H₂S.
- H₂S at a concentration of 1 ppm has been shown to irreversibly poison the fuel cell anode catalyst.
- Sulfur and H₂S at these concentrations may poison fuel processing catalysts (e.g. reforming, water-gas shift, PROX)

Strategy

- As the sulfur content of gasoline decreases, the strategy for removing sulfur must change.
 - Sulfur removal technologies that can be used with current gasoline (avg. 350 ppm S) may be ineffective with future gasoline (30-80 ppm S).
 - Fuel processing catalysts may be able to tolerate the sulfur levels in reformate produced from low-sulfur gasoline.
- Near-term strategy Adapt proven technologies capable of reducing H₂S to < 1ppm to fuel processing.
- Long-term strategy Develop new technologies or improve existing technologies to meet the required H₂S levels.

Objective

- Develop a sulfur removal process that reduces the H₂S concentration to <1 ppm in reformate under fuel processing conditions:
 - H₂ and H₂O concentrations as high as 40% volume.
 - Temperature ranging from 80-800°C.
- Compatible with design and operation of the fuel processor
 - Simple, requiring minimal processing and process control.
 - Maximum sulfur removal with minimal impact on weight/volume.
 - No unwanted byproducts requiring additional processing.

Approach

- Modeling
 - Identify parameters governing sorbent performance.
 - Predict sorbent lifetime and transient response.
- Synthesis/Fabrication
 - Develop coating processes for monoliths.
 - Develop new structured forms of ZnO.
- Experimental
 - Measure fundamental design parameters (sulfur loading capacity, reaction rates).
 - Evaluate sorbent performance in a microreactor system.
- Identify/Resolve Issues

Accomplishments and Activities During FY2000

- Developed a design model to predict performance of metal oxide adsorption bed.
- Concluded that a structured form of ZnO would be more effective than pellet form.
- Developed fabrication processes for producing new structured forms of ZnO.
- Experimental work to measure design parameters and to evaluate the sulfur removal efficiencies of new structured ZnO forms.

Reviewers' Comments from FY1999 Annual Review

- Consider other developmental sulfur removal catalysts/technologies.
- Broaden the scope to include sulfur removal before autothermal reformer/POX.
- Bring in Materials group to develop a new sulfur scrubber.

We Considered Alternative Technologies, but still Conclude that Adsorption is the Most Effective

- On-board Pre-Reforming
 - Physical adsorption of organic sulfur compounds
 - Chemical reaction followed by sulfur removal
- Autothermal Reactor
 - Sulfur "getter" (similar to catalytic converter)
- CO Cleanup
 - Chemical adsorption with chemical reactivity
 - Physical adsorption/absorption of H₂S

Why Adsorption Technology? Why ZnO?

- Why Adsorption technology?
 - Advantage
 - Simple, easily integrated into current fuel processor designs
 - Disadvantage
 - Difficult to deal with sulfur in POX (unfavorable equilibrium/startup)
- Why ZnO?
 - Advantages
 - Favorable H₂S equilibrium at temperatures below <400°C.
 - ZnO is chemically stable under oxidizing/reducing conditions.
 - Does not promote unwanted side reactions.
 - Disadvantage
 - Slow intrinsic kinetics compared to oxides of Mn, Fe, Cu.

Exposure of ZnO Pellets to Fuel Processing Conditions Indicate Some Potential Problems

 Cracking and spallation are observed that can lead to bed blockage.

Commercial ZnO pellet exposed to 980 ppm H₂S in dry reformate at 400°C.

Commercial ZnO pellet exposed to 980 ppm H₂S in wet reformate (25% H₂O) at 400°C.

Electrochemical Technology Program

Rapid loss of surface area if exposed to temperatures > 400°C will reduce H₂S uptake.

Commercial ZnO pellets exposed to dry or wet reformate (25% H_2O).

Pellet Form of ZnO is not Appropriate for Automotive Applications

- Commercial pellet form of ZnO is optimized for stationary applications.
 - Designed for high sulfur loading.
 - Normally operated at low H₂O concentrations (a few percent).
 - Not subject to rapid startup/shutdown.
- Potential issues for automotive applications.
 - Not designed for high space velocities (limited to < 2000 hr⁻¹ at 10 ppm).
 - Vibrations could cause grinding resulting in bed blockage and significant back pressures.
 - Rapid startup can cause spallation resulting from water boiling in pore space.

Structured forms of ZnO Better Suited for Automotive Applications

- Monoliths are an accepted technology in the automotive industry, used in the catalytic converter to minimize pressure drop.
- Monoliths and other structured forms have a higher surface-to-volume ratio than pellets which improve the sulfur removal rate.
- Uniformity of flow channels provides a more even flow distribution with a lower occurrences of channeling.
- Structured form of ZnO can significantly reduce the weight/volume of the sorbent unit given the low sulfur content of gasoline and the expected lifetime of the fuel processor.

Thin ZnO Layer Coating (50-100 : m) is Ideal for Optimizing Sulfur Removal

- Three fundamental processes that can determine the sulfur removal rate
 - External Mass Transfer
 - Diffusion
 - Reaction Kinetics
- For ZnO in pellet form
 - At low sulfur loading (<~2 wt% S), the sulfur removal rate is determined by the reaction kinetics.
 - As the ZnS product layer develops, the sulfur removal rate becomes diffusion controlled.
 - The ZnS product layer is ~75: m thick at 1.5 wt%.

Electrochemical Technology Program

mass transfer

Argonne National Laboratory

We have Developed a Process for Coating ZnO onto a Monolith

- A slurry-coating process is used to coat cordierite monoliths.
 - 20-40 wt% ZnO loading
 - Target is 50-100 : m ZnO layer
- We are having a major U.S.
 catalyst manufacturer produce
 ZnO-coated monoliths for testing.

We have Developed A Process to Fabricate a Self-Supporting Form of ZnO

- Tape casting method to produce a structured form of ZnO.
 - 100 wt% ZnO
 - Uniform ZnO layer thickness
 - Self-supporting
 - Easily shaped
- In preliminary studies, able to reduced H₂S from 30 ppm to <10 ppm at 8000 hr⁻¹.
- Investigate composite materials with superior mechanical strength that can be easily form into any desired shape. *Electrochemical Technology Program*

Using Modeling, We can Predict the Performance of Structured ZnO Forms

• Modeling is used to optimize the bed design as well as predict responses to transients.

Response of a ZnO-coated Monolith designed for 20 kWe operating at 50 kWe as a function of design space velocity

Response of a ZnO-coated Monolith designed for 20 kWe operating at 50 kWe Operation as a function of H₂S concentration.

 Based on modeling, we estimate that using a ZnO-coated monolith will reduce the bed weight by ~75% compared to ZnO pellets.

Future Work

- Evaluate the performance of commercially produced ZnO-coated monoliths with sulfur-containing fuels to reduce H₂S to < 1 ppm.
- Develop structured forms of ZnO using composite materials to improve reactivity and mechanical properties.
- Investigate the sulfur tolerance of fuel processing catalysts under processing conditions and the fate of sulfur during startup to better define the level of desulfurization required.
- Develop a adsorption process capable of reducing the H₂S concentration <0.1 ppm to protect the fuel cell anode catalyst but would not be integrated into the fuel processor.

Timelines/Milestones

GOAL

Develop a sulfur removal process to permit the use of gasoline with 30-80 ppm sulfur